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Abstract. Control Flow Integrity (CFI) is a promising defense technique against
code-reuse attacks. While proposals to use hardware features to support CFI al-
ready exist, there is still a growing demand for an architectural CFI support on
commodity hardware. To tackle this problem, in this paper we demonstrate that
the Transactional Synchronization Extensions (TSX) recently introduced by Intel
in the x86-64 instruction set can be used to support CFI.
The main idea of our approach is to map control flow transitions into transactions.
This way, violations of the intended control flow graphs would then trigger trans-
actional aborts, which constitutes the core of our TSX-based CFI solution. To
prove the feasibility of our technique, we designed and implemented two coarse-
grained CFI proof-of-concept implementations using the new TSX features. In
particular, we show how hardware-supported transactions can be used to enforce
both loose CFI (which does not need to extract the control flow graph in advance)
and strict CFI (which requires pre-computed labels to achieve a better precision).
All solutions are based on a compile-time instrumentation.
We evaluate the effectiveness and overhead of our implementations to demon-
strate that a TSX-based implementation contains useful concepts for architectural
control flow integrity support.
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1 Introduction

One serious security problem that continues to haunt security researchers and victims
alike is the presence of memory corruption vulnerabilities, which can lead to the arbi-
trary execution of code specified by an attacker. Because these attacks can have serious
consequences for the security of our lives and our society, countermeasures against
classical stack- and heap based code-injection attacks are widely deployed together
with general security mechanisms in modern computer systems. For instance, Operat-
ing Systems ship with Address Space Layout Randomization (ASLR) and executable
space protection like Exec Shield [40] or Data Execution Prevention (DEP) [2]. Addi-
tionally, modern compilers are able to harden applications against specific classes of
attacks. For example, stack canaries protect against buffer overflows, and Relocation
Read-Only (RELRO) protects against Global Offset Table (GOT) overwrite attacks. In
combination, these countermeasures have nearly eliminated code-injection attacks.



However, even with all of these mechanisms in place, code-reuse attacks are still
feasible. Hereby, the attacker reuses parts of the existing codebase of an application
to achieve his goal. Generally, attackers accomplish this by corrupting data within the
program and overwriting the target of an indirect jump (for example, by creating a fake
stack with fake return values), thus hijacking the program execution. Any indirect con-
trol flow transfer (that, unlike a direct control flow transfer, can be influenced by values
in program memory and CPU registers) is potentially vulnerable to this hijacking.

One line of defense against this type of attacks consist of checking the correctness
of indirect control flow transfers before they are executed, by using a technique called
Control Flow Integrity (CFI) [1]. In essence, CFI prohibits malicious redirections of
a program’s control flow by white-listing the possible targets of indirect transfers. If
a change of control flow resolves to anything but an allowed target, the system would
assume that there is an ongoing attack and terminate the program. Therefore, the goal
of CFI is to ensure that, even if an attacker can gain control of the target of an indirect
jump, her possible targets for control flow redirection are very limited and confined
to the expected behavior of the program. Many CFI implementations [1, 4, 28, 41–43],
countermeasures to CFI implementations [6, 9, 16, 17, 19], and defenses against these
countermeasures [25,26,31,34,38,39] have been proposed in recent years. Most of these
studies have focused on the recovery of accurate control flow graphs (to understand the
valid targets for indirect control flow transfers), on the binary instrumentation (to add
CFI to existing binaries), and on reducing the performance overhead of the solution.
Despite the importance of a hardware-supported CFI was already envisioned its original
proposal [1], not much work has focused on how control flow integrity can be enforced
by using features available in commodity hardware.

In this paper we present an application of the Transactional Memory-enabling in-
struction set extension (TSX), recently released by Intel for their Haswell processors,
to provide hardware support for the implementation of control flow integrity. In par-
ticular, we propose a novel design that uses TSX instructions to ensure control flow
integrity and we present a novel CFI implementation that introduces several interesting
challenges for attackers. TSX-based CFI can provide, in hardware, new constraints on
the attacker capabilities and a set of interesting protection features. In fact, aside from
ensuring control flow integrity, our solution prevents an attacker from executing any
system call after a hijacked indirect control flow transfer and introduces the ability to
“reset” a program to its state prior to the hijacked control flow when the presence of an
attacker is detected. These are powerful, previously absent capabilities, that we believe
can significantly raise the bar for attackers in terms of control flow hijacking attacks.

In summary, we make the following contributions:

Design. We design a novel approach to implement control flow integrity, using the
TSX instruction set extension recently released by Intel. Aside from simply providing
CFI, this approach also provides a level of protection against unwanted invocation of
system calls.

Implementation. We present two proof-of-concept implementations to show how TSX
can be used to enforce both loose and strict CFI solutions.

Evaluation. We perform a thorough evaluation of our TSX-based CFI implementa-
tions, detailing overhead, side-effects, and security gains.



2 Control Flow Integrity

In recent years, researchers have proposed several solutions to enhance programs with
CFI policies. Control flow integrity policies comes in two main forms, depending on
how restrictive they are in specifying and enforcing the possible control flow.

In strict, or “fine-grained” CFI, the minimum set for allowable targets for any in-
direct control flow transfer is identified. For example, a return from a function would
only be allowed to return to callers that could (legitimately) call the function. Before the
execution, the target of every indirect transfer must be determined, and at runtime, these
targets are verified whenever a control flow transfer takes place. A common method to
implement such a strict form of CFI is labeling. Labels are assigned to the edges of a
control flow transfer and are checked whenever the transfer occurs. Before a transfer
is allowed, a verification procedure ensures that this transfer resolves to a target with a
valid label.

Strict CFI is difficult to implement correctly, since the targets of indirect control
flow transfers must be determined statically. Thus, researchers proposed a weaker form
of CFI, called loose or “coarse-grained” CFI. This approximate technique segregates
indirect control flow transfers by category and enforces policies on each category. For
instance, loose CFI mandates that a transfer initiated by a ret instruction should always
resolve to a location directly after a call instruction. Likewise, a call instruction should
always transfer the control flow to the beginning of a function. Recent CFI implementa-
tions improve loose CFI by segregating control flow transfers into less coarse categories.
Typically, different types of control transfers are given a different label [42, 43].

BinCFI [43], for instance, uses static disassembly techniques, code instrumentation,
and binary rewriting to identify all indirect control flow transfers and then enhances the
program with coarse-grained CFI. Likewise O-CFI [26] uses static binary rewriting to
introduce coarse-grained CFI in combination with fine-grained code randomization as
protection against novel attacks. Another implementation requiring the relocation in-
formation of a binary, and thus slightly more knowledge, is CCFIR [42]. It introduces
a springboard section and indirect control flow transfers are only allowed to target the
springboard, which then redirects to the actual target. Contrary to these three imple-
mentations, which provide coarse-grained CFI and utilize static instrumentation, vf-
Guard [34] recovers C++ semantics of a given binary and uses Pin [3] to dynamically
enforce strict CFI. Another example for dynamic CFI enforcement is Lockdown [33],
which adds control flow guards for indirect calls and jumps and a shadow-stack to pro-
tect function returns via dynamic binary translation.

A completely different approach is to integrate CFI at compile time, which has the
advantage of avoiding many complex issues related to resolving the targets of indirect
control flow transfers (since static analysis of the source code before compilation can
be used to provide this information) and removing the need to instrument or rewrite
binaries. Niu et al. [28], for instance, introduced Monitor Integrity Protection, a coarse-
grained form of CFI which aligns instruction to chunks and enforce that indirect jumps
are targeting the beginning of a chunk with the goal to enforce low-level inlined refer-
ence monitor code integrity. Another example is SafeDispatch [24], a compiler based
on Clang++/LLVM that adds protection for C++ dynamic dispatches.



All comprehensive compiler-based fine-grained CFI solutions need to deal with a
common problem: shared libraries. Modern programs make often use of shared or dy-
namic loaded libraries. This problem is addressed by Niu et al. [29], who introduced
modular CFI based on ID tables representing the actual CFG which is constructed dur-
ing link-time. In between, production compilers could be enhanced to support com-
pilation for binaries with fine-grained CFI policies. Tice et al. [38], for example, use
vtable verification for virtual calls and indirect function-call checking to add practical
CFI instrumentation to both GCC and LLVM.

A hybrid approach, combining both compile- and runtime instrumentation, is pre-
sented by πCFI [31]. In this case, programs are initialized with an empty CFG, which
gets populated at runtime based on the provided input.

Recent research has expanded CFI beyond traditionally-compiled code on desktop
systems. For example, just-in-time compilation can be enhanced with CFI policies, as
shown in the case of RockJIT for JavaScript [30]. Furthermore, it has been shown that
even entire commodity kernels can be instrumented to enforce CFI policies, as demon-
strated in [12] and [18]. Moreover, MoCFI [13], a CFI framework for smartphones that
uses static analysis to extract the CFG of binary files and utilizes library injection and
in-memory patching to enforce CFI during runtime, shows that smartphones can also
benefit from CFI.

Hardware support for CFI
The vast majority of CFI implementations employ software mechanisms for enforc-
ing the integrity of control flow transfers [1, 4, 12, 28, 42, 43]. However, a few attempts
have been made to implement CFI using existing hardware features. CFIMon, for in-
stance, utilizes Intel’s Branch Trace Store, in combination with performance monitor-
ing units, to detect control flow violations on-the-fly [41]. Likewise, kBouncer employs
Intel’s Last Branch Recording to mitigate ROP exploits without modification of the
program [32] and PathArmor [39] uses the same hardware feature to enforce context-
sensitive CFI. Unfortunately, those systems suffer from the fact that the Last Branch
Record in its current implementation only records up to 16 branches. Our proposed
method of using TSX to achieve CFI complements software-based CFI approaches by
providing them with a mechanism to do the actual enforcement of CFI. Generally, it
can work with any label-based CFI scheme, and replaces software-enforced control
flow checking with a hardware-based solution.

Explicit architecture support of control flow integrity has been proposed by Budiu et
al. [5]. In their proposal, new instructions are added for labeling targets of control flow
transfer and for automated verification of these labels during a transfer. Davi et al. [15]
have pointed out that this approach is likely to generate coarse-grained CFI policies and
presented a different architecture for fine-grained CFI, based on two new instructions
for function calls and returns as well as heuristics for validating indirect jumps.

Two recent approaches that proposed hardware-based, label-based CFI systems are
HAFIX [14] and HCFI [7]. HAFIX enforces backward-edge CFI by extending the in-
struction set architecture of the Intel Siskiyou Peak and the LEON3 synthesizable pro-
cessors. Similarly, HCFI extends the ISA of a SPARC SoC and utilizes an additional
shadow stack to enforce both forward- and backward-edge CFI. Another hardware-
based approach is presented by Clercq et al. [8], in which instructions reside encrypted



in memory and are decrypted by the architectural CFI features in the instruction cache.
This architectural features are implemented in a LEON3 processor and decryption er-
rors occur when invalid branch targets are taken. While all these systems are good ex-
amples of hardware-based control flow integrity, they rely on custom hardware, rarely
shipped in commodity computers. Our proposed approach, on the other hand, leverages
a functionality that is already deployed in consumer CPUs.

An equivalent approach that uses recently introduced hardware features to enforce
CFI was developed in parallel to our work by Mashtizadeh et al. in CCFI [25]. CCFI
uses Intel’s AES-NI extensions to construct, store and verify cryptographic MACs for
pointers being used for control flow transfers, while the cryptographic key is held in
compiler reserved registers, invisible to the attacker. This solution provides strong se-
curity guarantees, but it faces additional challenges not present in our approach, which
result in an increased complexity. First, the introduced MACs for stack and heap ad-
dresses can suffer from replay attacks, in which an attacker leaks and uses a previous
constructed MAC to change the control flow. To prevent this attack, additional heap-
and stack-randomization need to be deployed. Furthermore, in certain corner cases, the
compiler does not recognize function pointers which would lead to MAC failures and
subsequent program termination. Although a static analyses pass for clang to detect
these cases is provided, additional work by the developer of a software is required. An-
other minor problem is that the compiler reserved registers to store the cryptographic
key are a subset of the registers introduced by Intel’s SIMD extension. Thus, applica-
tions which are heavily using this extensions would experience additional overhead.

3 Transactional Memory

Transactional memory is a concept used in concurrent programming to describe a tech-
nique that allows synchronized and efficient access to data structures in a concurrent
environment without the need of mutual exclusion [22]. Transactional memory intro-
duces the concept of transactions, finite sequences of machine instruction that are se-
rializable and atomic. Serializability means that different transactions appear as if they
are executed serially, and therefore that different transactions do not interleave with
each other. Atomicity, on the other hand, refers to the changes made to the shared mem-
ory: upon completion of a transaction, it either commits or it aborts. A commit makes
all changes to the shared memory visible to other processors, while an abort discards
the changes. Hence, the changes made to shared memory by one transaction are either
fully represented in the memory space of the program or completely undone.

3.1 Transactional Synchronization Extensions

A selected subset of Intel’s recent Haswell processors were manufactured with the
Transactional Synchronization Extension (TSX) [36]. This extension enhances the x86-
64 instruction set architecture by adding transactional memory features. Intel’s TSX al-
lows a programmer to specify code regions for transactional execution and provides two
distinct interfaces, Hardware Lock Elision (HLE) and Restricted Transactional Memory
(RTM) [10], that offer different functionality to users of transactional memory.



3.2 Hardware Lock Elision

HLE improves performance of concurrent code through the elision of hardware locks.
Two new instruction prefixes are introduced to be used in front of instructions which
normally would use software locks for synchronization:

XACQUIRE: The XACQUIRE prefix is used in front of an instruction which acquires a
lock to a critical memory region. It marks the beginning of a transaction but instead of
adding the shared memory to the processor’s read or write set, the lock itself is added to
the transaction’s read set. For the acquiring processor, it appears as if it has acquired
the lock, while for other processors the lock appears to be unchanged. Thus, other
processors can read the lock without causing a conflict and, therefore, concurrently
enter into the critical section. Although no data is actually written to the lock, the
hardware ensures that conflicts on shared data will cause a transactional abort.

XRELEASE: The XRELEASE prefix is used in front of an instruction which releases
a lock and ends a transaction. Normally, the release of a lock would involve a write
to the lock. Instead, the system verifies that the instruction following the XRELEASE
prefix restores the value of the lock to the value that it had before the XACQUIRE
prefixed instruction. If this is the case, the processor tries to commit the transaction.

If a transaction fails due to a conflicting write in the shared data or the associated lock,
all changes of the transaction are rolled back and the critical section is re-executed -
this time using the lock in the classical manner. The advantage of HLE is that multiple
threads can enter and execute critical sections protected by the same lock as long as no
simultaneous operations on shared data are causing conflicts.

Additionally, HLE provides backward compatibility in the instruction set through
a clever usage of instruction prefixes: processors without HLE support simply ignore
the XACQUIRE and XRELEASE prefixes for all instructions which can be prefixed by
XACQUIRE and XRELEASE and, thus, execute the critical code section with traditional
locking.

3.3 Restricted Transactional Memory

RTM is a more flexible interface for marking code regions for transactional execution,
without backward compatibility. This extension introduces three new instructions:

XBEGIN: The XBEGIN instruction is used to enter a transaction. Within a transaction,
all accessed memory is added to the transaction’s read set and all modified memory is
added to the transaction’s write set. The XBEGIN instruction must be followed by a
16- or 32-bit relative address to specify a fall-back path which gets executed when the
transaction’s commit fails or an explicit transactional abort occurs.

XEND: The XEND instruction ends a transaction and attempts to commit all changes.
Should the commit fail, the fall-back path specified in the XBEGIN instruction is exe-
cuted.

XABORT: The XABORT instruction is used to issue an abort for the transaction, rolling
back all changes made by the transaction and executing the fall-back path. The XABORT
instruction has to be followed by an 8-bit immediate as status code. This gives the pro-
grammer the possibility to specify a reason for issuing the abort.



The RAX register is used to indicate the reason for the execution of the fall-back path
when a transaction abort occurs. The value of this register is not relevant for our pur-
poses but, as we will see, the fact that it gets clobbered is inconvenient.

3.4 TSX Minutia

Intel’s TSX provides another instruction, which can be used in both RTM and HLE
based transactional execution paths:

XTEST: The XTEST instruction checks whether the processor is executing in a trans-
actional state due to a HLE or RTM transaction. If XTEST is executed inside a trans-
action, the Zero Flag (ZF) is set to 0. Otherwise, it is set to 1.

Furthermore, both RTM and HLE are capable of transactional nesting and instruction-
based aborts: While serializability of two distinct transactions is still ensured, both RTM
and HLE allow the execution of transactions within transactions. The processor specific
variables MAX RTM NEST COUNT and MAX HLE NEST COUNT are limiting this nest-
ing. The nesting of a HLE transaction inside a RTM transaction or the nesting of RTM
inside HLE remains undefined because both interfaces are accessing the same hardware
capabilities.

Additionally, certain instructions cause a transaction to abort, regardless of how the
transaction was initiated or what data has been written or read. Besides XABORT, the
instructions CPUID and PAUSE cause a transactional abort in all situations. Depend-
ing on the TSX implementation, other instructions can trigger an abort as well. Among
those are instructions for updating non-status parts of the EFLAGS register, interrupts,
ring transitions, processor state saves, and instructions for updating the segment regis-
ters. A side-effect of the instruction-based aborts is context switch sensitivity. Several
instructions, which can cause aborts depending on the specific implementation, are used
by the kernel to perform context switches. As a consequence, transactions are aborted
upon context switches.

3.5 Suitability for Software Security

TSX has already been analyzed for its possible application to software security. For ex-
ample, Muttik et al. [27] pointed out that TSX can be used to detect malicious changes
in memory by monitoring OS memory from a hypervisor and using transactional mem-
ory to automatically roll back these malicious changes. Furthermore, recent research
by Guan et al. [21] proposes Mimosa, a system to protect private keys against mem-
ory disclosure attacks using hardware transactional memory features. Private keys are
held in memory and decrypt or sign messages only within a transaction. Atomicity (as
described in Section 3) causes the transaction to abort when a concurrent, malicious
process tries to access the decrypted private key.

3.6 TSX Application for Control Flow Integrity

By studying the implementation of Intel’s TSX, we realized that it can be leveraged as
prototype for hardware-assisted CFI. Our intuition is that we can enter a transactional



execution state before a control flow transfer and commit the transaction after the con-
trol flow transfer is done. In this manner, RTM can be used to implement loose CFI
without checking labels in software. This is similar to the idea of control flow lock-
ing [4], which involves a write to a lock before an indirect control flow transfer and an
unlock operation after the transfer.

Furthermore, HLE can be used to implement labels, allowing both loose CFI and
strict CFI. This is based on the fact that the memory changed by a XACQUIRE instruc-
tion to enter a transaction has to be restored to its original value with the XRELEASE
instruction in order to successful commit the transaction. By carefully choosing the
memory location and value, we can ensure that redirected control flow will cause a
transaction to abort, which will then be detected.

Besides basic CFI functionalities, the current implementation of TSX provides ad-
ditional protection against current code-reuse attacks. Return Oriented Programming
(ROP), for instance, relies on the fact that a set of so called Gadgets, each ending with a
return instruction, can be chained together to form a more complex piece of code. In our
TSX-based CFI, every return instruction is preceded by either a RTM or HLE instruc-
tion to begin a transaction. Thus, the number of gadgets that can be chained is limited
by the corresponding MAX NEST COUNT for transactional nesting. Recent research has
shown that restricting the maximum length of ROP gadget chains makes exploitation
significantly harder, but attackers can still work around it [20]. However, TSX-based
CFI adds another challenge for an attacker. In fact, many instructions that are typically
used during an exploit (including system calls) trigger transactional aborts. Since for
most exploits an interaction with the kernel is required, the attacker would need to find
a way to escape from the transaction before the exploit can work.

4 Achieving CFI with TSX

Building up on the ideas described in Section 3.6, we designed an approach for provid-
ing control flow integrity using Intel’s Transactional Memory Extensions (TSX). It is
important to note that the techniques we discuss in this section can be adopted by any
existing CFI techniques to ensure the integrity of control flow transfers, as well as to
provide the additional protections afforded by TSX-CFI. Thus, we focus on the mech-
anism to detect the hijacking of the control flow, rather than on implementation details
of CFI. Specifically, we expect that other techniques (such as [17, 38, 42, 43]) can be
leveraged to generate labels for strict CFI, which includes the computation of the valid
targets for indirect control flow transfers.

In this section we discuss the implementation of both loose and strict CFI tech-
niques. As with other loose CFI designs, our solution trades limited protection for
simplicity in the implementation and deployment (i.e., the exact jump targets of ev-
ery instruction do not have to be determined). On the other end, our reference strict CFI
design provides stronger guarantees, with the requirement of a more complex analysis
to identify jump targets.

An important difference between TSX CFI and traditional CFI is that TSX CFI does
not prevent the attacker from hijacking the program’s control flow. Instead, it simply
ensures that any indirect control flow transfer in the program that can be hijacked by



an attacker happens inside a TSX transaction. As a result, the control flow hijacking
will eventually cause the transaction to abort, essentially rewinding the program to the
clean state right before the control flow was hijacked and redirecting the execution into
our fall-back path, which can use more sophisticated and time-consuming techniques
to verify the presence of an attack and abort the program.

4.1 Transaction Protection

A core tenet of performing CFI with TSX is that many instructions, including system
calls, cannot be performed inside a memory transaction. Thus, the underlying principle
of our approach is that we enter into a transaction before attempting an indirect jump
and exit from it at the jump target. These transactions are very short – in the normal
case, the transaction starts, the indirect control flow occurs, and the transaction ends.
If an attacker is able to manipulate the target of this instruction, and redirects it to an
instruction that does not end the transaction, the transaction will fail for one of several
reasons:

Context switch. The execution of the program is suspended by the kernel to run an-
other process.

Instruction-based aborts. The execution of a transaction-aborting instructions (e.g., a
system call).

TSX nesting limit. A transaction is nested in X other transactions, where X is the
transaction nesting limit of the CPU.

Each TSX failure case presents a different challenge to an attacker. The context switch
failure case limits the amount of code that an attacker can execute without closing the
transaction, instruction based aborts makes it impossible to execute certain instructions
like system calls while inside a transaction, and the TSX nesting limit puts a bound on
the length of an attacker’s ROP chain. This latter effect is very interesting: since we ini-
tiate a transaction before each indirect control flow transfer, an attacker that chains ROP
gadgets in the traditional way will enter an extra nested transaction with each gadget.
Since the nesting depth is limited (on most processors, this depth is 16), an attacker will
quickly hit the transaction nesting limit, and, thus, cause a transactional abort. Further-
more, to be successful, an attacker must first successfully exit all entered transactions,
in the reverse order of entering them, before operations such as system calls can be
carried out. We want to emphasize that the nesting limit poses problems only for an
attacker and not for benign applications. In fact, our implementation encloses only the
control flow transfer instructions within transactions, and not the entire target function.
For example, the transaction is opened just before a call instruction, and closed with
the first instruction of the call destination.

When a transaction aborts, two things occur. First, the actions taken by the attacker
while inside the transaction are discarded by the processor. Second, a fall-back path
is triggered to check for the presence of an attacker (i.e., by verifying that the control
flow transfer is going to a legal target). This is done because, aside from a control flow
hijack, a context switch (for example, when the process is suspended to allow another
process to run) will also abort a transaction. While this complicates our fall-back path,



[...]

xBegin fb call
call func
xEnd

[...]

func:
xEnd

[...]

mov r11, rax
xBegin fb ret
ret

fb ret:
mov rax, [esp]
mov rax, [rax]
and eax, 0xffffff
cmp eax, 0xd5010f
jne violation
mov rax, r11
pop r10
add r10, 0x03
jmp r10

violation:
mov eax,0x3c
mov edi,-0x1
syscall

Fig. 1: Control flow of a function returning for RTM-based CFI

it introduces another challenge to the attacker: they must escape our transaction quickly,
before the process is swapped out and the transaction is aborted.

4.2 RTM & Loose CFI

We leverage Restricted Transactional Memory (RTM) to provide an implementation
of loose CFI. To ensure that every indirect control flow transfer goes to a valid target,
a transaction is started before each transfer and ended at the target site. For example,
every function return is preceded by a XBEGIN instruction, while every function call
is followed by a XEND instruction. Thus, a transaction will be started, the function will
return, and the transaction will then be completed. As long the return address used by
the return instruction is not manipulated, the transaction can only fail due to a context
switch. The idea is visualized in Figure 1, using the example of a function return.

In a failure case, the fall-back path specified in the XBEGIN transaction will be
executed. Since RAX is used to indicate the reason for the fall-back path execution, we
copy its value into an unused scratch register before entering a transaction. This enables
us to restore the original function return value, which is also passed in RAX, in the case
that the fall-back path gets executed due to a context switch during a benign control
flow transfer. This can happen for two reasons: when the transaction is interrupted by
chance because of a context switch initiated by the kernel, and when the control flow is
hijacked by an attack. Thus, the fall-back path itself has to verify that the target of the
control flow transfer is still pointing to a memory location containing the opcodes for an
XEND instruction. Since different kinds of indirect control flow transfers determine the
target of a transfer differently, several fall-back paths are required. In the case of func-
tion returns, the target (i.e., the return address) is on the stack, and can be dereferenced
via RSP. Certain indirect jumps and calls, on the other hand, use a general purpose reg-
ister to specify the target of the transaction. Thus, the fall-back path has to deference the
content of the specific register. The only exception is provided by the CALL RAX and
JMP RAX instructions because RAX gets overwritten upon entering the fall-back path.
Naturally, instead of RAX, the local copy in the scratch register has to be dereferenced.
Furthermore, if the control flow transfer is initiated by a call instruction, it is also neces-
sary to save its origin inside another scratch-register. If the fall-back path can not detect
the presence of an attacker, it can push the saved origin and jump to the target, effec-
tively emulating the call. If the fall-back path does not detect the presence of a XEND



instruction at the transfer’s target, the presence of an attacker is assumed, and a CFI
violation policy is triggered. This, naturally, terminates the program. If the presence of
an attacker cannot be determined, the original value of RAX is restored, and the control
flow is transferred to the target of the indirect jump.

Provided protection. While the RTM implementation is very straightforward, it
can only reason about a single set of jump origins and jump targets. That is, if an
attacker hijacks the control flow, the presence of RTM CFI forces her to terminate the
transaction at a valid jump target. However, with the exception of certain actions that are
prohibited within a transaction (discussed in Section 4.1), an attacker can carry out any
modification of memory (for example, by initiating a ROP chain) and then transfer the
control flow back to a valid jump target, which will, in turn, terminate the transaction.

In essence, RTM provides weak security guarantees, but it is an important building
block towards TSX CFI, and a useful tool to later measure the performance impact
of our techniques. HLE, on the other hand, builds on these building blocks to provide
security guarantees for TSX-assisted CFI.

4.3 HLE & Strict CFI

With strict CFI, every indirect control flow transfer is only allowed to proceed along
strict well-defined paths. For example, functions may only return to their callers, and
indirect jumps can only go to targets that were intended for them by the programmer.
One way to implement such a policy is by using labels. With labels, every control
flow transfer is assigned a label that it shares with the valid targets of that control flow
transfer. When the transfer is triggered, the CFI policy ensures that the label at the
source address matches the label at the destination address, terminating the program if
this is not the case.

Intel’s Hardware Lock Elision provides functionality that can be leveraged to imple-
ment such labeled CFI. Specifically, HLE elides a memory write to a memory location
that represents the lock itself. We will term this location the lock location, and the value
at the lock location the unlock value. A transaction is entered by performing a write
to the lock location (termed a locking write), with the write instruction prepended by
XACQUIRE, and is successfully terminated when the unlock value is restored by a write
instruction prepended by XRELEASE (termed an unlocking write). We call the value
that resides at the lock location during a transaction a lock value. For a transaction to
commit successfully, the value written to the lock location during an XRELEASE must
be the unlock value.

Our idea is to introduce labels by carefully choosing the (numeric) value used during
the locking and unlocking write operations. The lock location is chosen as an offset on
the stack, and we implement the locking write by simply adding the label value to that
location. In turn, the unlocking write consists in subtracting the label, thus restoring
the unlock value and successfully committing the transaction at the intended target of
this control flow transfer. As with RTM, a transaction abort signals a potential attack.
However, some additional details must be considered when enforcing HLE-based CFI.
HLE has no mechanism to detect the reason why a transaction failed. While this has
the benefit of not clobbering RAX (unlike RTM), it comes with a cost: HLE has no



Listing 1 HLE-based CFI

1 [ . . . ]
2 c a l l f unc
3 x r e l e a s e l o c k sub [ r s p ] , 0 x c f 1 b e e
4 [ . . . ]
5

6 f unc :
7 [ . . . ]
8 x a c q u i r e l o c k add [ r sp−0x8 ] , 0 x c f 1 b e e
9 x t e s t

10 j n z i n s i d e t r a n s a c t i o n :
11 mov r11 , 0 x c f 1 b e e
12 jmp h l e c f i f b r e t
13 i n s i d e t r a n s a c t i o n :
14 r e t

capability to execute a fall-back path on a transaction abort. Instead, HLE simply re-
executes the critical section without eliding the lock write. Intel’s intention is that, if the
elided lock fails, a software-locking mechanism would simply take over. Thus, a virtual
fall-back path has to be injected for HLE-protected control flow transfers. This can be
done with the XTEST instruction, which identifies whether the process is currently in a
transactional context. Therefore, a failed or aborted transaction can easily be detected by
executing XTEST after entering the critical section. When an unsuccessful transaction
is detected, a jump to the virtual fall-back path can be issued manually.

The fall-back path itself is similar to the fall-back path of RTM CFI. The only
difference is that the fall-back path checks for a label in the code that would be executed
after the indirect control flow completes. As with RTM, we cannot simply assume the
presence of an attacker on transaction abort, because any context switch into the kernel
would also trigger a transactional abort. Thus, the fall-back path is necessary.

An example showing an instrumented return using HLE is presented, for clarity, in
Listing 1. A careful reader will notice that the lock location is actually different between
the XACQUIRE and XRELEASE instructions. In reality, the lock location is the same:
since the RET instruction itself modifies the stack pointer (by popping the 8-byte return
address), the offset must be different by exactly 8 bytes after the RET executes.

Provided protection. HLE extends the simple transactions provided by RTM with
the ability to label indirect control flow transfers, allowing HLE CFI to ensure that
indirect control flow transfers must proceed to a valid target and not just to any target.
Likewise, the fact that indirect control flow transfers take place within a TSX transaction
ensures that the execution flow cannot be hijacked and rerouted to system calls. Besides
that, HLE introduces novel, interesting capabilities in control flow transfer protection:
aside from ensuring that the transaction ends on a valid jump target, the use of HLE also
mandates that, between the beginning and end of a transaction, the value of the stack
pointer must be equal to itself plus the offset introduced by the instruction issuing the
control flow transfer. This is implicit as part of its operation because a location on the
stack is used as the lock location. To end a transaction successfully, this exact location
must be written to, and the exact same value (the unlock value) that it had before the
transaction began must be restored. If the stack pointer is unexpectedly modified during
the transaction (for example, if the attacker hijacked the control flow and initiated a
ROP chain), the unlock value will not be restored, since another location will be written
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Fig. 2: Overview of the TSX CFI Implementation

to, instead. This, in turn, will cause the transaction to fail, the attacker’s actions to be
rewound, and the attacker to be detected.

Thus, HLE-supported CFI provides a formidable protection against control flow
hijack attacks.

5 Implementation

We implemented our proposed TSX CFI design in a reference prototype to demonstrate
that TSX-based CFI can be used to enforce CFI policies and to understand the overhead
of such protection. This implementation is being released as open source, in the hope
that it will be useful to other security researchers.

Because we did not possess a binary analysis system capable of constructing an
accurate control flow graph from arbitrary binary applications, we implemented our
approach at the source code level by instrumenting the compiler (specifically, we added
a pass to the LLVM backend). While we consider binary analysis and rewriting outside
of the scope of our work, existing tools have solved this problem [26, 42, 43], and their
solutions could be reused directly to implement TSX-based CFI directly on binaries.

5.1 Integration approach

We chose to implement our reference prototype as a backend compilation pass in LLVM.
Our prototype combines a preprocessing-engine, the clang compiler with the TSX-CFI
backend pass, and a postprocessing engine. The preprocessor performs a linear search
over the provided source-code to detect and instrument inline assembly, since it would
be translated directly to binary code without being analyzed by the backend. The com-
piler produces an actual binary, where every function entry and every instruction issuing
an inter-functional control flow transfer is instrumented (i.e. direct calls, indirect calls,
function returns and tail-calls). During compilation, the TSX-CFI backend is unable to
tell whether the targets of direct calls are located inside the binary or inside an external
library, as this information is only visible at link time. However, since external calls
are resolved via the Procedure Linkage Table (PLT), these calls still require protection
against control flow hijacks. Thus, the LLVM backend emits only no-op instructions for
direct calls. These are fixed up by the postprocessor, which adds the protection for calls
preformed via the PLT. Figure 2 shows the general overview of our implementation.

5.2 Implementation Details

As the implementation of our prototype is fairly intricate, we provide this section to
introduce the interested reader with specific implementation aspects.



Selective Function Entry. Direct calls cannot be hijacked by attackers and, thus, do
not need to be protected. However, this poses a problem: if a function is called by both
direct and indirect calls throughout the binary, only the indirect calls should take place
inside a transaction. To facilitate this, the post-processing engine modifies direct calls
to a function to bypass the TSX transaction commit instruction. This does not reduce
the security of the indirect jump because, even if the attacker redirects the jump to skip
the transaction commit, he will still be stuck inside the transaction.

Lazy Binding & Full Relro. Our prototype supports the compilation of both bina-
ries resolving external function during runtime (Lazy Binding) and binaries resolving
all functions during load time. In Full-Relro the Global Offset Table, which stores the
location of resolved functions, is marked as read-only. In this case, calls via PLT can
only resolve to their intended target, which makes it impossible for an attacker to hijack
those external function. Thus, these calls do not need protection. To optimize this case,
we customized the dynamic loader to store pointers to the instruction after the commit
instruction in the GOT, similar to the case of direct jumps to functions within the binary.

5.3 Limitations

Our prototype suffers from two classes of limitations, due to the fact that we lack kernel
support and to our choice of using the clang compiler. While these problems are lim-
iting the applicability of our current prototype for real-world applications, they do not
pose any conceptual problem for TSX CFI. In the rest of this section, we address these
limitations and describe how they could be solved in a future implementation.

Standard C Library. The standard C library for GNU/Linux systems, glibc, can-
not be compiled with clang, since it requires functionality explicitly provided by gcc.
In turn, it is not possible to create a TSX CFI instrumented glibc with our reference
implementation. However, in order to provide a holistic TSX CFI solution, an instru-
mented standard C library is required. For this purpose, we instrumented musl, a free
and lightweight standard C library. Obviously, this can be a problem for programs that
are expecting the presence of glibc, for which we frequently observe crashes due to
the different locale subsystems. We verified that these crashes are purely based on the
incompatibility between the standard C libraries and are not introduced by our TSX CFI
prototype. This issue can be solved by adding a gcc TSX CFI extension.

Virtual Dynamic Shared Object. Another interesting side-effect of our TSX CFI
prototype is that we had to disable Virtual Dynamic Shared Object (vDSO) support.
This object is provided by the kernel and mapped in the address space of every process,
mainly to speed up syscalls, such as gettimeofday(), which are normally called via the
standard library. Since vDSO is entered using a call instruction, an instrumented ver-
sion of this object would be required for TSX CFI, which would require changes to
the kernel and break the operation of uninstrumented programs. Therefore, the usage
of vDSO in TSX-CFI instrumented programs is disabled for compatibility with unpro-
tected programs. As solution, a holistic approach including kernel support for TSX CFI
would be required.

Signal Handlers. Programs can register signal handlers that are executed upon the
reception of given signals. However, in this case it is the OS kernel that redirects the
control flow to the handler, and therefore a transaction is not entered when the signal



handler is called. A possible solution would be to instrument the libc to alter the signal
handlers pointers to use the un-instrumented function entry address. Another solution
would be to instrument the kernel itself, similar to the case of vDSO.”

Setjmp/Longjmp. The setjmp and longjmp interfaces are used to perform non-local
gotos. While our implementation does not instrument non-local gotos, they still repre-
sent a class of indirect control-flow transfers. To cope with them, an advanced analysis
engine for recovering the CFG would be required to retrieve the possible control flow
targets. Nevertheless, the indirect transfer itself can easily be protected with transactions
once the possible targets are known.

6 Evaluation

We evaluated our implementation to determine the practicality of TSX-based CFI. As
we discuss in Section 4, we view our approach as a general way to implement the pro-
tection of indirect control flow transfers and expect that it will be leveraged by complete
CFI approaches for that functionality. As such, the goal of this section is to provide an
understanding of the overhead that TSX-protected control flow transfers induce in the
runtime of actual application.

We performed our experiments on a diverse set of applications to evaluate the im-
pact of TSX-CFI on different workflows. For this evaluation, we chose GNU coreutils
(the collection of standard Linux binaries such ls), bzip2 (a common compression
utility), lame (an audio encoder with the main purpose of encoding WAV audio files to
MP3), and openssl (the general-purpose cryptography command line tool).

6.1 Experiments

We measured the performance of TSX-based CFI on a Intel Core i7 Haswell processor
that supports TSX operations. To measure the overall performance overhead of our TSX
CFI implementation, we selected tasks for the instrumented programs and calculated
the average execution time over a series of 20 executions, using both HLE and RTM-
provided indirect control flow protections. We chose the following programs and tasks:

coreutils: Execution of the 580 tests provided in the test-suite for the various utilities.
bzip2: Compression of a 200 megabyte file.
lame: Conversion of a 60 megabyte WAV file to a MP3 file with a bit rate of 128 Kbps.
openssl: Encryption of a 4 gigabyte file of random data with AES-256-CBC.

All of the experiments were executed with our instrumented version of musl, in which
we also protected all indirect control flow transitions. The bzip2, lame, and openssl
experiments ran without issue. However, of the 580 test cases provided by coreutils,
47 failed to run with our prototype, due to the differences of the locale subsystem of
musl, and glibc, as described in section 5.3. In the case of TSX-CFI implemented with
RTM, three additional coreutils test cases failed with segmentation faults. Investigation
into these segmentation faults revealed that they occurred due to program-defined signal
handlers: some signal handlers would redirect the control flow of the process without
entering a transaction, resulting in the execution of an XEND instruction outside of a
transaction, which crashes the process.



Fig. 3: Average runtime overhead

Program #Executed #Aborted
bzip2 565711783 1781
lame 493580143 247
openssl 546743640 1088

Table 1: Number of issued and
aborted transactions.

Program None RTM HLE RTM-relro HLE-relro
coreutils 85 101 117 90 99
bzip2 223 256 271 247 250
lame 401 459 523 422 450
openssl 2536 3362 4313 2817 3196
musl-libc 725 767 835 839 979

Table 2: Size of instrumented programs, in
Kilobytes.

6.2 Performance Overhead

We averaged the runtime of 20 executions on each experimental binary (in the case of
the coreutils, we averaged the total time of 20 executions of all coreutils test cases).
Due to the distinct workload carried out by the applications, we expected to see differ-
ent overhead with our CFI implementation, and this was, indeed, the case. For example,
lame, bzip2 and openssl, which spend most of their time in long-running loops for
encoding, compression, or encryption, and call many helper functions in these loops,
result in an overhead of up to 34%. On the other hand, most tools inside coreutils spend
much time interacting with the host OS through system calls, resulting in a small over-
head of up to 5% in the case of HLE, which reflects our expectations.

In the coreutils case, the majority of the overhead from HLE came from the lazy
binding of library functions. Again, this is consistent with what we expect: the coreutils
binaries are a mostly short-running utilities and use many library functions, leading to
the (CFI-protected) symbol resolution process to be called relatively frequently. En-
abling RELRO (turning off lazy binding) for these binaries results in a drastic decrease
of runtime overhead with HLE, to just 1%. On the other binaries with less system inter-
action (lame, bzip2, and openssl), the difference is negligible.

6.3 Transaction Aborts

When a transaction fails, execution is diverted to the fall-back path, which checks
whether the process has been exploited. However, as we discuss in Section 4.1, there
are several reasons, other than exploitation, that can cause a transaction to abort.



To understand how frequently this occurs during normal operation, we evaluated
the number of transactions that are attempted and the number that aborted. To do so,
we utilized the capabilities of Intel’s Software Development Emulator to measure the
amount of executed transactions. Unfortunately, the emulator does not report aborted
transactions caused by the environment (i.e., context switches). Thus, we computed
this number by instrumenting the aborted transaction fall-back path to track a counter
of the number of times it was executed. The results of this measurement are presented
in Table 1. From these results, we see that the rate of transaction failures is almost
negligible. Thus, the most significant part of overhead that we experience with TSX-
CFI is induced by continuously entering and leaving successful transactions. Ritson et
Barnes [37] observed that invoking a transaction costs approximately 43 clock cycles,
which, given the high number of executed transaction, results in the observed overhead.

6.4 Space Overhead

It is important to measure the space overhead of a program being protected by any CFI
approach, both in terms of memory usage and program size.

While CFI, when implemented with TSX, suffers no additional memory usage over-
head, the size of the program is increased due to the addition of both the TSX instruc-
tions themselves and also that of the fall-back paths. The size overhead, as shown in
Table 2, depends on the TSX method that is used to enforce CFI and on the number
of protected transitions inside the program. We calculated this overhead for the appli-
cations themselves (in the case of the coreutils, we used the arithmetic mean of the
overhead for individual binaries) and the standard library.

We feel that, especially with modern systems, the low space overhead introduced
by our implementation is quite acceptable for a CFI implementation.

7 Discussion

The use of TSX for control flow integrity brings interesting possibilities, but it also
introduces several challenges. This section discusses the challenges, protections, and
possible future research directions in the area of TSX-based CFI.

7.1 TSX Performance

As described in the evaluation section, the simple act of entering a TSX transaction
incurs an immediate performance penalty. However, some different directions can be
explored to reduce this overhead in the future:

Hardware improvements. TSX is a very young technology, and it is very likely that
performance optimizations will be implemented in future Intel processors. While little
can directly be done by security researchers to bring this about, the usefulness of
TSX for things other than its actual intended application (i.e., this CFI approach or
the protection of cryptographic keys in memory [21]) might make TSX a high-profile
target for optimization.



Virtual Transactional Memory. TSX transactions are aborted whenever a context switch
occurs. These transaction aborts have a strong impact on the performance, since they
force our solution to use complex fall-back paths to check for the presence of an at-
tack. These fall-back paths introduce runtime and space overhead, but are unavoidable
with context-switch-based transaction aborts.
One approach toward eliminating this overhead is to allow a transaction to pause in
the event of a process being paused, and resume when the process is resumed. In fact,
designs for virtual transactional memory have been proposed [35] that would allow
transactions to survive across context switches (specifically, pauses and resumes of
a running process).If these techniques are adopted in the future, they could greatly
improve the performance of TSX CFI.

Selective protection. Not every part of a program is equally vulnerable to a control
flow hijack, and those functions that are not (and do not utilize any other functionality
that must be protected) may not need CFI protection. A similar trade-off is seen in
the application of stack canaries to prevent buffer overflows, where functions that
lack any overflowable buffers do not receive stack canaries [11]. Performance could
be greatly improved by leaving such “low-risk” functions similarly unprotected by
TSX CFI. Similarly, protection could focus on specific types of control flow transfers.
For example, function returns can be protected through the use of a shadow stack or
a similar, less expensive approach, leaving the more expensive TSX protections for
indirect calls and jumps, for which fewer alternative protection mechanisms exist.

While it is hard to speculate on the future of TSX, it is clear that it is an important capa-
bility, not only in the field of concurrent systems, but also in computer security. It seems
quite likely that additional effort will be put into its optimization and the addressing of
its limitations.

7.2 Protection Strength

As we discuss in Section 4.1, TSX-based CFI works by ensuring that, if an attacker
manages to hijack the control flow of a program, he will find himself inside a TSX
transaction. These transactions severely limit what an attacker can do, and if the attacker
violates the restrictions the transaction is aborted and the process is rewound to the state
before the control flow was hijacked. When this occurs, a fall-back path is triggered,
checking for the presence of an attacker (by verifying whether the pending control flow
transfer is targeting a legal location) and aborting the program if an attack is detected.

Thus, to perform useful actions, an attacker is forced to find a way to escape from the
TSX transaction, using one of the following two options: (1) The attacker can jump to
some previously-injected shellcode that commits the transactions and gives the attacker
control or (2) the attacker can execute several ROP gadgets inside the transaction, in-
fluence the program state, then jump to the actual legal target of the initial protected
control flow transfer.

Both options introduce challenges for the attacker. The first option is already mit-
igated by existing countermeasures against code-injection attacks, such as Data Exe-
cution Prevention or the No-eXecute bit, that are widely deployed in modern systems



to prevent injected data from being executed. Attackers bypass these protections by di-
verting the control flow to execute a system call, such as mprotect(), that allows the
injected data to be executed. However, this process involves the execution of a system
call, which is not allowed inside a transaction. Thus, the attacker is presented with a
chicken-and-egg problem: in order to commit the transaction, he must execute a system
call, and in order to execute a system call, he must commit the transaction.

The second option is a possible, if seemingly infeasible way to escape a transaction.
An attacker could hijack the control flow and, without aborting the transaction, utilize
a small ROP chain to perform some action before jumping to the intended target of the
hijacked control flow and letting the transaction commit happen. The attacker would
then perform actions in this ROP chain, being careful not to violate the restrictions
placed on him by the transaction. For example, these actions can include influencing
sensitive data structures in the program. Although this certainly empowers the attacker
in comparison to other CFI solutions, in practice, carrying out this attack is extremely
difficult, especially for the HLE based CFI approach. Specifically, the stack pointer and
the lock value must not unexpectedly change values during the control flow transfer.
Thus, an attacker must execute this attack without altering the stack pointer or the lock
value across the transaction. Additionally, this chain must be fairly short: a context
switch during ROP chain execution will lead to an aborted transaction and the detection
of the attacker. To make matters worse (for the attacker), using any protected indirect
control flow transfer will cause the initiation of additional transactions, all of which the
attacker must escape (in reverse order of initiation, and without modifying the stack
pointer or lock value) before escaping the original transaction. We feel that, in practice,
these restrictions make such an attack infeasible.

7.3 Comparison with Other Techniques

Our approach introduces a higher overhead when compared to other recent CFI enforce-
ment schemes which do not require dedicated hardware features, such as [26,29,39,42].
While this is surely a drawback of the presented implementation, we believe that it is
too early to disregard TSX CFI as unusable, since Hardware Transactional Memory it-
self is a new CPU feature and performance speed-ups are feasible in further iterations.
However, our main goal is to explore the suitability of the new hardware transactional
memory features for control flow integrity purposes. We hope that our study can pro-
vide useful insights on how hardware-assisted CFI could look like and that it can help
other researchers in the field to design future CFI implementations.

Moreover, we were happy to see that Intel recently released its Control-flow En-
forcement Technology Preview (CET) [23], in parallel to this paper, showing the de-
mand of hardware manufacturers to provide architectural CFI support. CET is meant to
advance the processor with features against ROP attacks. In more detail, a shadow stack
is used to protect function returns and indirect branch tracking for protecting indirect
control flow transfers. The latter technique introduces a new instruction, ENDBRANCH,
which needs to be executed after the occurrence of an indirect control flow transfer.
Since CET in its current state is only a preview and is not available for consumer hard-
ware yet, we can not compare its performance to TSX CFI. However, it is notable that
the CET’s indirect branch tracking is similar to our RTM based approach: In both cases



the processor is set to a state waiting for a certain instruction to specify the end of a con-
trol flow transfer; In TSX CFI this state is explicitly forced by opening a transaction,
while CET introduces a new WAIT FOR ENDBRANCH state, which is implicitly im-
posed to the processor upon executing an indirect call or jump. While the shadow stack
provides stronger security guarantees and could easily replace TSX CFI for backward-
edges in a future implementation, the deployment of labels like presented in our HLE
based CFI approach yields a finer granularity than CET’s indirect branch tracking.

7.4 Additional Capabilities - Future Work

While not related directly to CFI, TSX has other potential applications that are interest-
ing. A possible application is to ensure the integrity of certain sensitive memory regions
or registers over the course of the execution of some functionality deemed to be “dan-
gerous” (i.e., a strcpy known to contain user input). For example, a HLE transaction
could be entered by subtracting 0 from the sensitive memory region, the functionality
could be carried out, and the transaction would be committed by subtracting 0 again.
If the contents of the sensitive memory region were different (i.e., due to an attack) at
the end of the transaction from their value at the beginning, the transaction will abort.
Registers can, likewise, be protected by XORing them to memory as part of initiating
the transaction and XORing them to memory again to commit the transaction.

If virtual transactional memory is adopted, these approaches can be utilized to pro-
tect data in relatively complicated program functionality, as long as no system calls are
performed.

8 Conclusion

In this paper, we proposed a technique to enhance control flow integrity by leveraging
new hardware capabilities, intended to support transactional memory.

Our design provides two distinct levels of CFI protection: unlabeled CFI and la-
beled strict CFI. In a TSX-based CFI system, every indirect control flow transfer occurs
inside a transactional memory transaction. If such a control flow transfer is hijacked by
an attacker, the attacker will find himself inside the transaction, with severely limited
capabilities. Eventually, this transaction will be aborted, which will roll back all of the
changes to memory or registers made by the attacker and lead to the attacker’s detec-
tion. As a side-effect, our technique can protect the values of the stack pointer as part
of its operation. If an attacker modifies this register, for instance during a code-reuse
attack, and attempts to commit the transaction, the transaction will fail.

We implemented a proof-of-concept prototype of TSX-supported CFI and used it
to evaluate the runtime and size overhead of instrumented programs. The evaluation
of our approach showed that induced overhead in performance is mediocre compared
with other recent CFI solutions, with a very modest program size overhead and no other
memory usage increase. While the overhead is higher in comparison to other CFI ap-
proaches, we discuss possibilities for speed-up, and the potential of future developments
to enable faster TSX-supported CFI.
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